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Adversarialni utoky jsou zname od roku 2014

Explaining and Harnessing Adversarial Examples

Published as a conference paper at ICLR 2015

L ATNTH AN HARNESSING (2014) lan J. Goodfellow, Jonathon Shlens, Christian Szegedy

ADVERSARIAL EXAMPLES

Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy
Google Inc., Mountain View, CA
{goodfellow, shlens, szegedy}egoogle. com

ABSTRACT

Several machine learning models, including neural networks, consistently mis-
classify adversarial examples—inputs formed by applying small but intentionally
worst-case perturbations to examples from the dataset, such that the perturbed in-
put results in the model nincorrect with high confidence. Early
attempts at explaining this phenomenon focused on nonlinearity and overﬁmng
We argue instead that the primary cause of neural networks’ vulnerability to ad-
versarial perturbation is their linear nature. This explanation is supported by new
quantitative results while giving the first explanation of the most intriguing fact
about them: their generalization across architectures and training sets. Moreover,
this view yields a simple and fast method of generating adversarial examples. Us-
ing this approach to provide examples for adversarial training, we reduce the test
set error of a maxout network on the MNIST dataset.

1 INTRODUCTION

Szegedy et al. (2014b) made an intriguing discovery: several machine learning models, including
state-of-the-art neural networks, are vulnerable to adversarial examples. That s, these machine
learning are only slightly di ly classified exam-
ples drawn from the data distribution. In many cases, a wide variety of models with different archi-
tectures trained on different subsets of the training data misclassify the same adversarial example.
‘This suggests that adversarial examples expose fundamental blind spots in our training algorithms.

‘The cause of these adversarial examples was a mystery, and speculative explanations have suggested
itis due to extreme nonlinearity of deep neural networks, perhaps combined with insufficient model
averaging and insuffcient regularization of the purely supervised learning problem. We show that
these speculative hypotheses are Linear behavior in hi spaces is suf-
ficient to cause adversarial examples. This view enables us to design a fast method of generating
adversarial examples that makes adversarial training practical. We show that adversarial training can
provide an additional regularization benefit beyond that provided by using dropout (Srivastava et al.,
2014) alone. Generic regularization strategies such as dropout, pretraining, and model averaging do
not confer a significant reduction in a model’s vulnerability to adversarial examples, but changing
to nonlinear model families such as RBF networks can do so.

Our explanation suggests a fundamental tension between designing models that are easy to train due
o their linearity and designing models that use nonlinear effects to resist adversarial perturbation.
In the long run it may be possble o cscape his radeoff by deigning more powerfl opimization
‘methods that can succesfully train more nonlinear models.

2 RELATED WORK

Szegedy etal. (2014b) variety of intrigui ies of neural networks and related
models. Those most relevant to this paper include:
« Box-constrained L-BFGS can reliably find adversarial examples.

 On some datasets, such as ImageNet (Deng et al., 2009), the adversarial examples were so
close to the migi..u examples that the differences were indistinguishable to the human eye.

o Th i by a variety of classifiers with different
&vchncc!urcs or tmmed on d:ffclenl subsets of the training data. m +

N sign(VJ(0,,y)) esign(V4J (0, 2,y))

“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence
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ABSTRACT

Several machine learning models, including neural networks, consistently mis-
classify adversarial examples—inputs formed by applying small but intentionally
worst-case perturbations to examples from the dataset, such that the perturbed in-
put results in the model nincorrect with high confidence. Early
attempts at explaining this phenomenon focused on nonlinearity and overfitting.
We argue instead that the primary cause of neural networks’ vulnerability to ad-
versarial perturbation is their linear nature. This explanation is supported by new
quantitative results while giving the first explanation of the most intriguing fact
about them: their generalization across architectures and training sets. Moreover,
this view yields a simple and fast method of generating adversarial examples. Us-
ing this approach to provide examples for adversarial training, we reduce the test
set error of a maxout network on the MNIST dataset.

1 INTRODUCTION

Szegedy et al. (2014b) made an intriguing discovery: several machine learning models, including
state-of-the-art neural networks, are vulnerable to adversarial examples. That s, these machine
learning are only slightly di ly classified exam-
ples drawn from the data distribution. In many cases, a wide variety of models with different archi-
tectures trained on different subsets of the training data misclassify the same adversarial example.
‘This suggests that adversarial examples expose fundamental blind spots in our training algorithms.

‘The cause of these adversarial examples was a mystery, and speculative explanations have suggested
itis due to extreme nonlinearity of deep neural networks, perhaps combined with insufficient model
averaging and insuffcient regularization of the purely supervised learning problem. We show that
these speculative hypotheses are Linear behavior in hi spaces is suf-
ficient to cause adversarial examples. This view enables us to design a fast method of generating
adversarial examples that makes adversarial training practical. We show that adversarial training can
provide an additional regularization benefit beyond that provided by using dropout (Srivastava et al.,
2014) alone. Generic regularization strategies such as dropout, pretraining, and model averaging do
not confer a significant reduction in a model’s vulnerability to adversarial examples, but changing
to nonlinear model families such as RBF networks can do so.

Our explanation suggests a fundamental tension between designing models that are easy to train due
o their linearity and designing models that use nonlinear effects to resist adversarial perturbation.
In the long run, it may be possible to escape this tradeoff by designing more powerful optimization
‘methods that can succesfully train more nonlinear models.
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2 RELATED WORK

Szegedy etal. (: variety of intriguis i \d related
models. Those most relevant to this paper include:
« Box-constrained L-BFGS can reliably find adversarial examples.

 On some datasets, such as ImageNet (Deng et al., 2009), the adversarial examples were so
close to the original examples that the differences were indistinguishable to the human eye.

o Th d al le is often mi by a variety of classifiers with different
architectures or trained on different subsets of the training data. xT +

- sign(Val(0:2,9))  ign(v,7(6, 2,1))

“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Stanislav Fort | Adversarialni Gtoky | 17. fijna 2024 | Dny Al + Seznam.cz | CVUT Praha



arXiv:1412.6572v3 [stat ML] 20 Mar 2015

[ I 4

Published as a conference paper at ICLR 2015

EXPLAINING AND HARNESSING
ADVERSARIAL EXAMPLES

Ian J. Goodfellow, Jonathon Shiens & Christian Szegedy
Google Inc., Mountain View, CA
{goodfellow, shlens, szegedy}@google.com

ABSTRACT

Several machine learning models, including neural networks, consistently mis-
classify adversarial examples—inputs formed by applying small but intentionally
worst-case perturbations (0 examples from the dataset, such tha the perturbed in-
put results in the model nincorrect ith high confidence. Early
attempts at explaining this phenomenon focused on nonlinearity and overfitting.
We argue instead that the primary cause of neural networks’ vulnerability to ad-
versarial perturbation is their linear nature. This explanation is supported by new
quantitative results while giving the first explanation of the most intriguing fact
about them: their generalization across architectures and training sets. Moreover,
this view yields a simple and fast method of generating adversarial examples. Us-
ing this approach to provide examples for adversarial training, we reduce the test
set error of a maxout network on the MNIST dataset.

1 INTRODUCTION

Szegedy et al. (2014b) made an intriguing discovery: several machine learning models, including
state-of-the-art neural networks, are vulnerable to adversarial examples. That s, these machine
learning models misclassify examples that are only slightly different from correctly classified exam-
ples drawn from the data distribution. In many cases, a wide variety of models with different archi-
tectures trained on different subsets of the training data misclassify the same adversarial example.
‘This suggests that adversarial examples expose fundamental blind spots in our training algorithms.

‘The cause of these adversarial examples was a mystery, and speculative explanations have suggested
itis due to extreme nonlinearity of deep neural networks, perhaps combined with insufficient model
averaging and insufficient regularization of the purely supervised learing problem. We show that
these speculative hypotheses are Linear behavior in high-di spaces is suf-
ficient to cause adversarial examples. This view enables us to design a fast method of generating
adversarial examples that makes adversarial training practical. We show that adversarial training can
provide an additional regularization benefit beyond that provided by using dropout (Srivastava et al.,
2014) alone. Generic regularization strategies such as dropout, pretraining, and model averaging do
not confer a significant reduction in a model’s vulnerability to adversarial examples, but changing
to nonlinear model families such as RBF networks can do so.

Our explanation suggests a fundamental tension between designing models that are easy to train due
o their linearity and designing models that use nonlinear effects to resist adversarial perturbation.
In the long run, it may be possible to escape this tradeoff by designing more powerful optimization
‘methods that can succesfully train more nonlinear models.

2 RELATED WORK

Szegedy etal. (2014b) variety of intrigui ies of neural networks and related
models. Those most relevant to this paper include:

 Box-constrained L-BFGS can reliably find adversarial examples.
 On some datasets, such as ImageNet (Deng et al., 2009), the adversarial examples were so
close to the nriginal examples that the differences were indistinguishable to the human eye.

o Th by a variety of classifiers with different
e.vchnccmxes or h’amed on d:ffcmnl subsets of the training data.

1

Adversarialni utoky jsou zname od roku 2014

Explaining and Harnessing Adversarial Examples
(2014) lan J. Goodfellow, Jonathon Shlens, Christian Szegedy

“In adversarial machine learning we wrote over 9000 papers in
ten years and got nowhere. You all have a harder problem. And
less time.” — Nicholas Carlini
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Ten samy problém i v téch nejvétsich modelech

@ @& ChatGPT 4o asnre @) @D @ chatcpT 4o & snare (@)

What do you see in this photo?

What do you see in this photo? Please be brief.

@ The image appears to be heavily distorted, but from the visible elements, it resembles a famous

scene frorrlRick Astley's music video for the song "Never Gonna Give You Up."IThe person in the

. = m— o . - . @®  Theimage shows ar{old cannon mounted on a stand] positioned in an outdoor setting, with a park
image seems to be dressed in attire similar to what Rick Astley wore in the video, standing near a

microphone, which is also iconic from that era. The distortion makes it hard to see the details of greensey In the:background. Thers s visual elfect- that makes thessurmeundings appear

clearly, but the general setting and posture suggest this interpretation. somewhat stylized or abstract, giving it a painterly or dreamlike quality. The cannon seems

weathered, indicating it might be historical.

OO POy
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To samé plati pro jazyk

A simple math problem: 1 + 2 =
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A simple math problem: 1 + 2 =3
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Utoky na velké jazykové modely

Scaling Laws for Adversarial Attacks on Language
Model Activations

Stanislav Fort*

December 6, 2023

Abstract

We explore a class of adversarial attacks targeting the activations of | models. By ipulating a
relatively small subset of model activations, a, we demonstrate the ability to control the exact prediction
of a significant number (in some cases up to 1000) of sub tokens t. We irically verify a scaling
law where the maximum number of target tokens {max predicted depends linearly on the number of tokens
a whose activations the attacker controls as t,,,, = xa, and find that the number of bits of control in
the input space needed to control a single bit in the output space (that we call attack resistance x) is
remarkably constant between =~ 16 and =~ 25 over 2 orders of magnitude of model sizes for different
language models. Compared to attacks on tokens, attacks on activations are predictably much stronger,
however, we identify a surprising regularity where one bit of input steered either via activations or via
tokens is able to exert control over a similar amount of output bits. This gives support for the hypothesis
that adversarial attacks are a consequence of dimensionality mismatch between the input and output
spaces. A practical implication of the ease of attacking language model activations instead of tokens is for
multi-modal and selected retrieval models, where additional data sources are added as activations directly,
sidestepping the tokenized input. This opens up a new, broad attack surface. By using language models
as a controllable test-bed to study adversarial attacks, we were able to experiment with input-output
that are i ible in ter vision, ially where the output dimension dominates.

Two t y: Manipulating just one token’s activations in a language model can precisely
dictate the subsequent generation of up to O(100) tokens. We further demonstrate a linear scaling of this
control effect across various model sizes, and remarkably, the ratio of input control to output influence remains
consistent, underscoring a fundamental dimensional aspect of model adversarial vulnerability.
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Figure 1: (Left panel) A diagram showing an attack on the activations (blue vectors) of a language model
that leads to the change of the predicted next token from species to friend. (Right panel) The maximum
number of tokens whose values can be set precisely, tmax, scales linearly with the number of attack tokens a.

“Now at Google DeepMind. Work done while independent.

Scaling laws for Adversarial Attacks on Language
Model Activations
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To samé plati pro jazyk

Elsimple math problem: 1 + 2 = turtle

|V[O,38] +=-016  v[0,198] += -4.93 v[0,465] += -0.84 Vv[0,619] +=-271 v[0,743] +=1771 |
v[0,40] +=1717  v[0,261] += 0.074 v[0,476] += 5678 Vv[0,622] += -0.91 v[0,772] += 3.212
IV[O,51] +=-1.30 v[0,401] += 0158 v[0,498] +=8.186 v[0,631] +=3.011 v[0,802] += -3.37
v[0,61] += 4093 v[0,410] += 0.822 v[0,552] += 0.632 v[0,698] += -3.44 v[0,939] += 7616
L/[O,120] += -066 Vv[0414] +=3166 Vv[0,578] +=2167 v[0,703] +=-110 Vv[0,1016] += —6.30_I
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To samé plati pro jazyk

@simple math problem: 1+ 2= Oh, Death was
never enemy of ours! We laughed at him, we leagued with him,
old chum. No soldier's paid to kick against His powers. We
laughed, — knowing that better men would come, And greater
wars: when each proud fighter brags He wars on Death, for
lives; not men, for flags.
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Ensemble everything everywhere: Multi-scale
aggregation for adversarial robustness

Stanislav Fort! and Balaji Lakshminarayanan!
1Google DeepMind

pose a signil hall to the iability and ali of deep
neural networks. We propose a novel, easy approach to ieving high-quality i
that lead to adversarial robustness through the use of multi: ion input i and
dynamic self- ing of i iate layer predictions. We that i iate layer

predictions exhibit inherent robustness to adversarial attacks crafted to fool the full classifier, and
propose a robust aggregation mechanism based on Vickrey auction that we call GrossMax to dynamically

ble them. By inis i ion inputs and robust ensembling, we achieve significant
adversarial robustness on CIFAR-10 and CIFAR-100 datasets without any adversarial training or extra
data, reaching an adversarial accuracy of ~72% (CIFAR-10) and ~48% (CIFAR-100) on the RobustBench
AutoAttack suite (L., = 8/255) with a finetuned ImageNet-pretrained ResNet152. This represents a result
comparable with the top three models on CIFAR-10 and a +5 % gain compared to the best current
dedicated approach on CIFAR-100. Adding simple adversarial training on top, we get ~78% on CIFAR-10
and ~51% on CIFAR-100, improving SOTA by 5 % and 9 % respectively and seeing greater gains on the
harder dataset. We validate our approach through extensive experiments and provide insights into the

interplay between and the hi ical nature of deep representations. We show
that simple gradient-based attacks against our model lead to human-interpretable images of the target
classes as well as interpretable image changes. As a using our multi- ion prior, we
turn pre-trained classifiers and CLIP models into image and develop

transferable attacks on large vision language models.

(2) Multi-resolution prior (b) Layerdecoupling _ »_y» g0
o St e

o3 pwuisten 9980

(o) Atacks towards apple. oak and g:rl

okl -..

() SOTA resuits on RobustBench

(€) Multi-resolution self-ensemble

&

Casaty

Figure 1| We use a multi-resolution decomposition (a) of an input image and a partial decorrelation of
predictions of intermediate layers (b) to build a classifier (¢) that has, by default, adversarial robustness
comparable or exceeding state-of-the-art (£), even without any adversarial training. Optimizing inputs
against it leads to interpretable changes (d) and images generated from scratch (e).
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neural networks. We propose a novel, easy. approach to achieving high-quality i
that lead to adversarial robustness through the use of multi: ion input i and
dynamic self- ing of i iate layer predictions. We that i iate layer

predictions exhibit inherent robustness to adversarial attacks crafted to fool the full classifier, and
propose a robust aggregation mechanism based on Vickrey auction that we call CrossMax to dynamically

ble them. By inis i ion inputs and robust ensembling, we achieve significant
adversarial robustness on CIFAR-10 and CIFAR-100 datasets without any adversarial training or extra
data, reaching an adversarial accuracy of ~72% (CIFAR-10) and ~48% (CIFAR-100) on the RobustBench
AutoAttack suite (L., = 8/255) with a finetuned ImageNet-pretrained ResNet152. This represents a result
comparable with the top three models on CIFAR-10 and a +5 % gain compared to the best current
dedicated approach on CIFAR-100. Adding simple adversarial training on top, we get ~78% on CIFAR-10
and ~51% on CIFAR-100, improving SOTA by 5 % and 9 % respectively and seeing greater gains on the
harder dataset. We validate our approach through extensive experiments and provide insights into the
interplay between i and the hi ical nature of deep representations. We show

that simple gradient-based attacks against our model lead to human-interpretable images of the target
classes as well as interpretable image changes. As a using our multi- ion prior, we
turn pre-trained classifiers and CLIP models into image and develop
transferable attacks on large vision language models.
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Figure 1 | We use a multi-resolution decomposition (a) of an input image and a partial decorrelation of
predictions of intermediate layers (b) to build a classifier (¢) that has, by default, adversarial robustness
comparable or exceeding state-of-the-art (£), even without any adversarial training. Optimizing inputs
against it leads to interpretable changes (d) and images generated from scratch (e).
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http://www.youtube.com/watch?v=U_xphN6ubmc

Vstup pres mnoho rozliseni + sum + cukani

Figure 3 | An image input being split into N progressively lower resolution versions that are then
stacked channel-wise, forming a 3N-channel image input to a classifier.
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propose a robust aggregation mechanism based on Vickrey auction that we call CrossMax to dynamically

ble them. By inis i ion inputs and robust ensembling, we achieve significant
adversarial robustness on CIFAR-10 and CIFAR-100 datasets without any adversarial training or extra
data, reaching an adversarial accuracy of ~72% (CIFAR-10) and ~48% (CIFAR-100) on the RobustBench
AutoAttack suite (L., = 8/255) with a finetuned ImageNet-pretrained ResNet152. This represents a result
comparable with the top three models on CIFAR-10 and a +5 % gain compared to the best current
dedicated approach on CIFAR-100. Adding simple adversarial training on top, we get ~78% on CIFAR-10
and ~51% on CIFAR-100, improving SOTA by 5 % and 9 % respectively and seeing greater gains on the
harder dataset. We validate our approach through extensive experiments and provide insights into the

interplay between and the hi ical nature of deep representations. We show
that simple gradient-based attacks against our model lead to human-interpretable images of the target
classes as well as interpretable image changes. As a using our multi- ion prior, we
turn pre-trained classifiers and CLIP models into image and develop

transferable attacks on large vision language models.
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Figure 1| We use a multi-resolution decomposition (a) of an input image and a partial decorrelation of
predictions of intermediate layers (b) to build a classifier (¢) that has, by default, adversarial robustness
comparable or exceeding state-of-the-art (f), even without any adversarial training. Optimizing inputs
against it leads to interpretable changes (d) and images generated from scratch (e).
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dedicated approach on CIFAR-100. Adding simple adversarial training on top, we get ~78% on CIFAR-10
and ~51% on CIFAR-100, improving SOTA by 5 % and 9 % respectively and seeing greater gains on the
harder dataset. We validate our approach through extensive experiments and provide insights into the

interplay between and the hi ical nature of deep representations. We show
that simple gradient-based attacks against our model lead to human-interpretable images of the target
classes as well as interpretable image changes. As a using our multi- ion prior, we
turn pre-trained classifiers and CLIP models into image and develop
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Figure 1| We use a multi-resolution decomposition (a) of an input image and a partial decorrelation of
predictions of intermediate layers (b) to build a classifier (¢) that has, by default, adversarial robustness
comparable or exceeding state-of-the-art (£), even without any adversarial training. Optimizing inputs
against it leads to interpretable changes (d) and images generated from scratch (e).
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Figure 1| We use a multi-resolution decomposition (a) of an input image and a partial decorrelation of
predictions of intermediate layers (b) to build a classifier (¢) that has, by default, adversarial robustness
comparable or exceeding state-of-the-art (£), even without any adversarial training. Optimizing inputs
against it leads to interpretable changes (d) and images generated from scratch (e).
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Figure 1 | We use a multi-resolution decomposition (a) of an input image and a partial decorrelation of
predictions of intermediate layers (b) to build a classifier (¢) that has, by default, adversarial robustness
comparable or exceeding state-of-the-art (), even without any adversarial training. Optimizing inputs
against it leads to interpretable changes (d) and images generated from scratch (e).
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Interpretovatelné atoky jsou jeding, co funguje
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Velky kus k reSeni pro vizualni sité

lan Goodfellow

A, Christian Szeged X Y
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It’s always good to temper one’s optimism for empirically validated
defenses against adversarial examples, but this is the most promising
one I've heard of in several years. Definitely worth reading this explainer
thread

| had a great discussion with Stanislav. | am very impressed by the
progress he made on adversarial robustness. | think this work has much
more implications than it might seem at first glance. Also for generative
models, not just for classification.
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