

Databases at the Crossroads of
Scale, Real-Time, and AI

Zohar Elkayam

Principal Solutions Architect

Aerospike

Choosing the Right Database for the Right Use Case,

don't leave your database choice to chance!

About Me: Zohar Elkayam

● Principal Solutions Architect at Aerospike.

● Decades of Database Expertise (28+ Years) in

relational and non-relational databases.

● I like to talk and write about technology: blogger,

public speaker, technology enthusiast.

● I’m driven by Problem-Solving (I love Puzzles!)

About Me: Zohar Elkayam

● Principal Solutions Architect at Aerospike.
● Decades of Database Expertise (28+ Years) in relational and non-

relational databases.
● I like to talk and write about technology: blogger, public speaker,

technology enthusiast.
● I’m driven by Problem-Solving (I love Puzzles!)

linkedin.com/in/ZoharElkayam

zelkayam@aerospike.com

5©2025 Aerospike, Inc. — All rights reserved | Aerospike is a registered trademark of Aerospike Inc. /

Agenda
Databases Basics01

Types of Databases02

Best Practices03

6©2025 Aerospike, Inc. — All rights reserved | Aerospike is a registered trademark of Aerospike Inc. /

Databases Basics01

It's Not Just About 'A' Database Anymore

● One size doesn't fit all

● Wrong choices lead to pain

○ Data inconsistencies and integrity problems.

○ Performance issues and slow response times.

○ Scalability challenges and difficulty handling growth.

○ Increased costs and operational overhead.

○ Security vulnerabilities and data breaches.

Start with the 'What': Key Use Case Questions

These are some of the CRITICAL questions to ask before choosing a

database

● Use Case: What is the use case? What problem are you solving?

● Data Model: What is the structure of your data?

● Query Patterns: How will you be accessing the data?

● Consistency: Do you need strong consistency (ACID) or is

eventual acceptable?

● Business impact: How would the technology affect your

business?

Continue with the 'How': Technical Requirements

These are more CRITICAL questions to ask before choosing a

database

● Latency Requirements: How quickly do you need responses?

● Data Volume and Velocity: How much data will you

accumulate, and at what rate?

● Scalability Needs: What are your expected read and write

loads? How much will your data grow?

● Budget: Do you have specific constraints related to licensing,

hosting, or operational costs?

Databases, In-Memory Databases, and Caches:
What's the Difference?

● Databases: Provide persistent data storage with ACID properties

○ Advantages: Data durability, data consistency, support for complex queries

○ Disadvantages: Slower access compared to in-memory or cache

Databases, In-Memory Databases, and Caches:
What's the Difference?

● Databases: Provide persistent data storage with ACID properties

○ Advantages: Data durability, data consistency, support for complex queries

○ Disadvantages: Slower access compared to in-memory or cache

● In-memory databases: Store data in main memory (RAM) for extremely fast access

○ Advantages: Low latency, high throughput

○ Disadvantages: Volatility (data loss if the system crashes), higher cost, size limit

Databases, In-Memory Databases, and Caches:
What's the Difference?

● Databases: Provide persistent data storage with ACID properties

○ Advantages: Data durability, data consistency, support for complex queries

○ Disadvantages: Slower access compared to in-memory or cache

● In-memory databases: Store data in main memory (RAM) for extremely fast access

○ Advantages: Low latency, high throughput

○ Disadvantages: Volatility (data loss if the system crashes), higher cost, size limit

● Cache: A temporary storage area that stores copies of frequently accessed data for

faster retrieval

○ Advantages: Reduces database load, improves application response times

○ Disadvantages: Can become outdated (stale data), limited storage capacity

Feature Database In-Memory Database Cache

Primary Purpose Persistent storage of data
Persistent storage, optimized for

speed

Temporary storage for faster

data access

Storage Medium Disk (HDD or SSD) Primarily RAM RAM only

Data Durability High Varied Low

Data Persistence Always Optional, depending on the config. Never, by design.

Data Volume
Designed for large datasets

(terabytes+)
Limited by available RAM

Smaller than in-memory

databases

Speed Slower Very fast Fastest

Complexity Can be complex
Can be complex, but often simpler

than disk-based
Relatively simple (key-value)

Use Cases

General-purpose data

storage, transactional

systems

Applications requiring very low

latency, real-time analytics

Speeding up access to

frequently used data, reducing

database load

Examples

MySQL, PostgreSQL,

MongoDB, Aerospike,

Cassandra

Aerospike, Redis (with

persistence), MemSQL, SAP

HANA

Redis, Memcached, Varnish

14©2025 Aerospike, Inc. — All rights reserved | Aerospike is a registered trademark of Aerospike Inc. /

Predictive AI

→ Inflexible tailor made models

for a specific use case

→Well-defined inputs:

structured, consistent

→Mission critical real time use

cases - speed and reliability

important

Predict what will happen

Generative AI

→Produce rich, open-ended

outputs from a single

foundation model (LLM)

→Retrieval-augmented

generation (RAG) to ground

the LLM

→Challenge: Surface “right” set

of documents

Generate new artifacts

Agentic AI

→Goal, not response-driven

→Use tools and APIs

→Multi-step

Planning and doing

AI is rapidly changing

15©2025 Aerospike, Inc. — All rights reserved | Aerospike is a registered trademark of Aerospike Inc. /

Database types02

A Sea of Options

Relational Databases: Order in the Data Chaos

● Key Features:

● Structured: data organized in tables with rows and columns.

● Referential Integrity: Ensures and enforce relationships

between tables are maintained, preventing inconsistencies

using foreign keys.

● Transactions: Allow multiple operations to be grouped

together, ensuring that either all operations succeed or none

do - ACID properties to guarantee data integrity.

● Limitations: Can struggle with massive scale (especially writes) and

highly unstructured data. Vertical scaling can be expensive.

● Common use-cases: ERP systems, CRM, Financial Systems, E-

commerce Platforms

● Examples: MySQL, Oracle, PostgreSQL, MSSQL Server

The Modern Data Challenges

● Exploding Data Volume & Velocity: Traditional databases

struggle to handle the sheer scale and speed of modern data.

● Diverse Data Structures: Applications now require storing and

processing unstructured, semi-structured, and polymorphic data.

● Agile and flexible data model: The need to quickly adapt to

changing schemas.

● Scalability & Availability: Businesses demand systems that can

scale rapidly and remain highly available, even under heavy load.

● Cost-Effective Solutions: Traditional relational database scaling

(especially vertical scaling) can be prohibitively expensive.

Beyond Traditional: The NoSQL Advantage

● Purpose-Built: Specialized solutions for specific data

challenges,not one-size-fits-all.

● Performance: Optimized for scale, latency, and throughput.

● Horizontal Scaling: Efficiently distribute across commodity

hardware.

● Flexible Consistency: CAP theorem trade-offs, often relaxing

ACID guarantees.

● Diverse Data Models: many types - key-value, document, wide-

column, and graph and more.

● Trade-off: Data Relationships: Joins and referential integrity are

generally not supported (managed at the application level).

NoSQL: Key-Value Stores - Speed and Simplicity

● Best For:

● Simple data models where you retrieve data by a key.

● High-velocity, low-latency operations (caching, session management).

● High-volume reads.

● Highly partitionable and offer excellent scalability.

● Limitations: Limited querying capabilities (beyond key lookup). Not suitable for

complex relationships.

Example use-cases: Caching, Session Management, Shopping Cart data, User Profiles

Solutions: Aerospike, Amazon DynamoDB, Memcached, Redis

NoSQL: Document Databases - Flexible Schemas

● Best For:

● Mostly access by Key however secondary indexes are available.

● Semi-structured data (e.g., JSON, XML).

● Applications with evolving schemas.

● Storing user profiles, product information.

● Limitations: Can be less efficient for complex joins (compared to RDBMS). Consistency

models vary.

Example use-cases: Content Management Systems (CMS), E-commerce Catalogs, User

Profiles

Solutions: Aerospike, Amazon DocumentDB, Couchbase, MongoDB

NoSQL: Wide-Column Stores - Scalability and High
Write Throughput

● Best For:

● Store data in columns grouped into column families.

● Massive datasets with high write loads.

● Very good for accumulating records.

● Applications requiring high availability and fault tolerance.

● Limitations: More complex data modeling. Queries are often less flexible than

RDBMS.

Example use-cases: IoT Data, Time Series data, Messaging applications, Logging.

Solutions: Apache Cassandra, HBase, ScyllaDB

NoSQL: Graph Databases - Relationships Matter

● Best For:

● Highly interconnected data (social networks, knowledge

graphs, fraud detection).

● Data design based on vertices and edges

● Can have very complex queries

● Limitations: Can be overkill for simple data models. Less mature

tooling and languages.

Example use-cases: Social Networks, Recommendation Engines,

Identity Resolution, Fraud Detection, Knowledge Graphs

Solutions: ArangoDB, JanusGraph, Neo4j

Beyond the Basics: Specialized Databases

● Time Series Databases (e.g., InfluxDB, Prometheus):

Optimized for time-stamped data.

● Search Engines (e.g., Elasticsearch, Solr): Full-text

search, indexing, and analytics.

● NewSQL Databases (e.g., CockroachDB, Yugabyte

DB, Google Spanner): Aim to combine the scalability of

NoSQL with relational guarantees of RDBMS.

● Dedicated Columnar Databases (e.g., ClickHouse,

Vertica, Snowflake): high-performance analytical

workloads on large datasets.

24©2025 Aerospike, Inc. — All rights reserved | Aerospike is a registered trademark of Aerospike Inc. /

Best Practices03

No One-Size-Fits-All

Tips for Choosing the Right Database:

● Start with your use case requirements: clearly define

the application requirements and the use cases.

● Analyze the data model and characteristics.

● Evaluate the scalability, performance, and cost

requirements.

● Consider the security and compliance needs.

● Research and compare different database options -

understand the tradeoffs between different database

types.

● There's no "one-size-fits-all" solution.

● Don't be afraid to experiment and benchmark.

Conclusion

● We talked about different database factors to consider:

Data model, volume, throughput, latency.

● We discussed basic database concepts like ACID, BASE

and the Cap Theorem.

● We touched on Relational database and contrasted with

NoSQL.

● We explored the different NoSQL solutions and

showcased some of the cloud-based solutions.

● We finished with some best practices.

Final Notes:

Thoroughly analyze your requirements and select the

technology that best aligns with your application's present and

future needs. Start planning your database strategy today!

Let’s make it
official

Scan to get the
presentations

Q&A

Thank You

	Slide 1
	Slide 2: Databases at the Crossroads of Scale, Real-Time, and AI
	Slide 3: About Me: Zohar Elkayam
	Slide 4: About Me: Zohar Elkayam
	Slide 5: Agenda
	Slide 6: Databases Basics
	Slide 7: It's Not Just About 'A' Database Anymore
	Slide 8: Start with the 'What': Key Use Case Questions
	Slide 9: Continue with the 'How': Technical Requirements
	Slide 10: Databases, In-Memory Databases, and Caches: What's the Difference?
	Slide 11: Databases, In-Memory Databases, and Caches: What's the Difference?
	Slide 12: Databases, In-Memory Databases, and Caches: What's the Difference?
	Slide 13
	Slide 14: AI is rapidly changing
	Slide 15: Database types
	Slide 16: Relational Databases: Order in the Data Chaos
	Slide 17: The Modern Data Challenges
	Slide 18: Beyond Traditional: The NoSQL Advantage
	Slide 19: NoSQL: Key-Value Stores - Speed and Simplicity
	Slide 20: NoSQL: Document Databases - Flexible Schemas
	Slide 21: NoSQL: Wide-Column Stores - Scalability and High Write Throughput
	Slide 22: NoSQL: Graph Databases - Relationships Matter
	Slide 23: Beyond the Basics: Specialized Databases
	Slide 24: Best Practices
	Slide 25: No One-Size-Fits-All
	Slide 26: Conclusion
	Slide 27: Final Notes:
	Slide 28: Let’s make it official Scan to get the presentations
	Slide 29: Q&A
	Slide 30: Thank You

